Preview

Russian Social and Humanitarian Journal

Advanced search

ASSESSMENT OF THE NETWORK COMMUNITY SUBJECTIVITY BY INDICATORS OF CONTENT AUTOMATIC RELATIONAL-SITUATIONAL ANALYSIS

https://doi.org/10.18384/2224-0209-2020-3-1031

Abstract

Aim. Presentation of regression models of the subjectivity of network communities based on automatically determined indicators of the content relational situational analysis (RSA). Methodology. To develop these models 64 network communities of various thematic focus from the open segment of social networks (Facebook, VKontakte, Odnoklassniki, Pikabu, Telegramm, etc.) were analyzed. The networks communities texts were subjected to psycholinguistic analysis using a previously developed list of discourse markers, and the results allowed to identify indicators of subjectivity. Automatic relational situational analysis of texts was performed using an RSA machine developed at the Institute for System Analysis of the Russian Academy of Sciences. Results. Comprehensive regression models of satisfactory quality were constructed for all indicators of subjectivity. Research implications. The use of the obtained regression models will allow to monitor various sectors of the Runet in an automated mode and to assess he subjectivity of the content.

About the Authors

A. N. Voronin
Institute of Psychology of the Russian Academy of Sciences
Russian Federation


T. A. Kubrak
Institute of Psychology of the Russian Academy of Sciences
Russian Federation


I. V. Smirnov
Federal Research Center “Computer Science and Management” of the Russian Academy of Sciences
Russian Federation


M. A. Stankevich
Federal Research Center “Computer Science and Management” of the Russian Academy of Sciences
Russian Federation


References

1. Воронин А. Н. Методологические проблемы исследования субъектности сетевых сообществ // Психология и Психотехника. 2019. № 3 [Электронный ресурс]. URL: https://nbpublish.com/ptmag/contents_2019_3.html#30388 (дата обращения 09.04.2020).

2. Воронин А. Н., Ковалева Ю. В. Изменение субъектности сетевого сообщества в процессе троллинга // Социальная и экономическая психология. 2019. Т. 4. № 3 (15). С. 25-61.

3. Вучков И., Бояджиева Л., Солаков Е. Прикладной линейный регрессионный анализ / пер. с болг. Ю. П. Адлера. М.: Финансы и статистика, 1987. 239 с.

4. Емельянова Т. П., Журавлев А. Л. Психология больших социальных групп как коллективных субъектов // Психологический журнал. 2009. Т. 30. № 3. С. 5-15.

5. Журавлев А. Л. Психология коллективного субъекта // Психология индивидуального и группового субъекта / К. А. Абульханова, В. А. Барабанщиков, А. В. Брушлинский и др. М.: ПЕР СЭ, 2002. С. 51-81.

6. Журавлев А. Л. Коллективный субъект как феномен и понятие в современной психологии // Разработка понятий современной психологии / отв. ред. А. Л. Журавлёв, Е. А. Сергиенко. М.: Институт психологии РАН, 2018. С. 116-161.

7. Методы выявления по тексту психологических характеристик автора (на примере агрессивности) / А. К. Ковалёв, Ю. М. Кузнецова, А. Н. Минин, М. Ю. Пенкина, И. В. Смирнов, М. А. Станкевич, Н. В. Чудова. Вопросы кибербезопасности. 2019. № 4 (32). С. 72-79.

8. Осипов Г. С., Смирнов И. В., Тихомиров И. А. Реляционно-ситуационный метод поиска и анализа текстов и его приложения // Искусственный интеллект и принятие решений. 2008. № 2. С. 3-10.

9. Оценка субъектности сетевых сообществ: сопоставление дискурсивных маркеров и показателей РСА / А. Н. Воронин, Н. Д. Павлова, Т. А. Гребенщикова, Т. А. Кубрак, И. В. Смирнов // Социальная и экономическая психология. 2020. Т. 5. № 2 (18). С. 330-364.

10. Павлова Н. Д. Интерактивный аспект дискурса: подходы к исследованию // Психологический журнал. 2005. Т. 26. № 4. С. 66-76.

11. Павлова Н. Д., Кубрак Т. А., Гребенщикова Т. А. Исследование динамики субъектности сетевых сообществ по её проявлению в дискурсе // Психологические исследования. 2020. Т. 13. № 70 [Электронный ресурс]. URL: http://psystudy.ru/index.php/num/2020v13n72/1782-pavlova72.html?fontstyle=f-larger (дата обращения: 09.04.2020).

12. Погорский Э. К. Особенности цифровых гуманитарных наук // Знание. Понимание. Умение. 2014. № 5 [Электронный ресурс]. URL: http://www.zpu-journal.ru/e-zpu/2014/5/Pogorskiy_Digital-Humanities (дата обращения: 09.04.2020).

13. Семантико-синтаксический анализ естественных языков. Часть II. Метод семантико-синтаксического анализа текстов / И. В. Смирнов, А. О. Шелманов, Е. С. Кузнецова, И. В. Храмоин // Искусственный интеллект и принятие решений. 2014. № 1. С. 11-24.

14. Создание инструмента автоматического анализа текста в интересах социо-гуманитарных исследований / С. Н. Ениколопов, Ю. М. Кузнецова, И. В. Смирнов, М. А. Станкевич, Н. В. Чудова // Искусственный интеллект и принятие решений. Ч. 1. Методические и методологические аспекты. 2019. №. 2. С. 28-38.

15. Субъектность сетевого сообщества: сравнение психометрических моделей проявления дискурсивных маркеров в контенте / А. Н. Воронин, Т. А. Гребенщикова, Т. А. Кубрак, Н. Д. Павлова // Вестник Московского государственного областного университета. Серия: Психологические науки. 2019. № 3. С. 6-24.

16. Текстовые проявления фрустрированности пользователя социальных сетей / Ю. М. Кузнецова, И. А. Курузов, И. В. Смирнов, М. А. Станкевич, Е. В. Старостина, Н. В. Чудова // Медиалингвистика. 2020. № 7 (1). С. 4-15.

17. Al-Mosaiwi M., Johnstone T. In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation // Clinical Psychological Science. 2018. № 6 (4). P. 529-542.

18. Azucar D., Marengo D., Settanni M. Predicting the big 5 personality traits from digital footprints on social media: A meta-analysis // Personality and Individual Differences. 2018. V. 124. P. 150-159.

19. Drouin M., Boyd R. L., Greidanus Romaneli M. Predicting recidivism among internet child sex sting offenders using psychological language analysis // Cyberpsychology, Behavior, and Social Networking. 2018. Vol. 21. P. 78-83.

20. Grunebaum M. F. Suicidology meets “Big Data” // Journal of Clinical Psychiatry. 2015. Vol. 76. № 3. P. e383-e384.

21. TACIT: An open-source text analysis, crawling, and interpretation tool / M. Dehghani, K. M. Johnson, J. Garten, R. Boghrati, J. Hoover, V. Balasubramanian, A. Singh, Y. Shankar, L. Pulickal, A. Rajkumar, N. J. Parmar // Behavior Research Methods. 2017. № 49 (2). P. 538-547.

22. Tracking suicide risk factors through Twitter in the US / J. Jashinsky, S. H. Burton, C. L. Hanson, J. West, C. Giraud-Carrier // Crisis. 2014. Vol. 35. P. 51-59.

23. Lambiotte R., Kosinski M. Tracking the Digital Footprints of Personality // Proceedings of the Institute of Electrical and Electronics Engineers (IEEE). 2014. № 102 (12). P. 1934-1939.

24. Manovich L. Cultural Data: Possibilities and Limitations of Digitized Archives // Museum and Archive on the Move. Changing Cultural Institutions in the Digital Era. Berlin, Boston: De Gruyter, 2017. P. 259-276.

25. Pennebaker J. W. Campbell R. S. The effects of writing about traumatic experience // Clinical Quarterly. 2000. № 9. P. 17-21.

26. Potter J. Discoursive psychology and the study of Naturally occurring Talk // Qualitative Research. SAGE Publications, 2011. P. 187-207.

27. Soffer O. The Internet and National Solidarity: A Theoretical Analysis // Communication Theory. 2013. Vol. 23. № 1. Р. 48-66.

28. The Study of Network Community Capacity to be a Subject: Digital Discursive Footprints / A. N. Voronin, T. A. Grebenschikova, T. A. Kubrak, T. A. Nestik, N. D. Pavlova // Behavioral Sciences. 2019. № 9. URL: https://doi.org/10.3390/bs9120119 (дата обращения: 09.04.2020).

29. Towards assessing changes in degree of depression through Facebook / A. H. Schwartz, J. Eichstaedt, M. Kern, G. Park, M. Sap, D. Stillwell, L. Ungar // Proceedings of the Workshop on Computational Linguistics and Clinical Psychology. Association for Computational Linguistics. 2014. P. 118-125.

30. Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text / F. Mairesse, M. A. Walker, M. R. Mehl, R. K. Moore // Journal of Artificial Intelligence Research. 2007. № 30. P. 457-500.

31. Wilson S. R. Natural language processing for personal values and human activities: a dis. … Doctor of Philosophy. Michigan, 2019. 146 p. URL: https://deepblue.lib.umich.edu/handle/2027.42/150025 (дата обращения: 09.04.2020).

32. Yarkoni T. Personality in 100,000 words: A large-scale analysis of personality and word use among bloggers // Journal of Research in Personality. 2010. № 44. P. 363-373.


Review

Views: 386


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2224-0209 (Online)