Preview

Russian Social and Humanitarian Journal

Advanced search

TRANSVERSE ELECTRIC CONDUCTIVITYOF QUANTUM COLLISIONAL PLASMAS WITH CONSTANT COLLISION FREQUENCY IN MERMIN APPROACH

https://doi.org/10.18384/2224-0209-2012-2-606

Abstract

The article presents the formulae for transverse electric conductivity and dielectric
permeability in quantum collisional plasma. The kinetic equation in momentum space in
relaxation approaching with constant collision frequency for derivation of these formulae is
used. It is shown, that when Plancks constant tends to zero the deduced formula passes
in the corresponding formula for classical plasma. It is shown also, that when frequency of
collisions of particles of plasma tends to zero (i.e. plasma passes in collisionless plasma),
the formula for electric conductivity passes in the well-known Lindhards formula.

About the Authors

А. Латышев

Russian Federation


А. Юшканов

Russian Federation


References

1. Латышев А.В. Поперечная электрическая проводимость в квантовой столкнови- тельной плазме [Электронный ресурс] // Электронный журнал «Вестник Московского го- сударственного областного университета» [Сайт]. - 2012 - № 1. - С.85-138. - URL: http:// evestnik-mgou.ru/vipuski/2012_1 /stati/fi zimat/ latyshev.html (зарегистрировано в ФГУП НТЦ «Информрегистр» № 0421200150 012).

2. Anderson D., Hall B., Lisak M. and Marklund M. Statistical effects in the multis-tream model for quantum plasmas//Phys. Rev. E 65 (2002), 046417.

3. Brodin G., Marklund M., Manfredi G. Quantum Plasma Effects in the Classical Regime// Phys. Rev. Letters 100. (2008). P. 175001-1 - 175001-4.

4. Dressel M. , Gruner G. Electrodynamics of Solids. Optical Properties of Electrons in Matter// Cambridge. Univ. Press, 2003. - 487 p.

5. Eliasson B. and Shukla P.K. Dispersion properties of electrostatic oscillations in quantum plasmas// arXiv:0911.4594v1 [physics.plasm-ph] 24 Nov. 2009. - 9 pp. 6. Gelder van, A.P. Quantum Corrections in the Theory of the Anomalous Skin Effect// Phys. Rev. 1969. Vol. 187. No. 3. - P. 833-842.

6. Kliewer K.L., Fuchs R. Lindhard Dielectric Functions with a Finite Electron Life-time// Phys. Rev. 1969. V. 181. No. 2. P. 552-558.

7. Lindhard J. On the properties of a gas of charged particles//Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser. V. 28. No. 8 (1954), p.-57.

8. Manfredi G. and Haas F. Self-consistent fl uid model for a quantum electron gas//Phys. Rev. B 64 (2001), 075316.

9. Manfredi G. How to model quantum plasmas//ArXiv: quant - ph/0505004. - 30 pp.

10. Martin P.C. Sum Rules, Kramers-Kronig Relations, and Transport Coeffi cients in Charged Systems//Phys. Rev. V. 161. No. 1. 1967. - P. 143-155.

11. Mermin N. D. Lindhard Dielectric Functions in the Relaxation-Time Approximation// Phys. Rev. B. 1970. V. 1. No. 5. - P. 2362-2363.

12. Pains D. and Nozieres P. The Theory of Quantum Liquids. V. I: Normal Fermi Liquids//

13. W.A. Benjamin, inc. N.-York-Amsterdam, 1966. 355 p.

14. Shukla P.K. and Eliasson B. Nonlinear aspects of quantum plasma physics//Uspekhy Fiz. Nauk, 53 (1) 2010;[V. 180. No. 1. P. 55-82 (2010) (in Russian)].

15. Wierling A. Interpolation between local fi eld corrections and the Drude model by a generalized Mermin approach//arXiv:0812.3835v1 [physics.plasm-ph] 19 Dec/ 2008.


Review

Views: 155


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2224-0209 (Online)