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O BbIBOJE OBOBLWEHHOW TrPABUTALIMOHHOW
SHTPOMUA

AHHOmauus. TpencTaBneH HOBbIM BbiBOO OOOOLLEHHOW rpaBUTaLUOHHOMN
3HTPOMUK, CBA3AHHOW C MOBEPXHOCTSIMU «MEPENYThIBAHUSA» KOPa3MepPHOCTU 2.
Mpennaraembi noaxop, 6nmnsok K «raMuIIbTOHOBY» meTtoay
IxakobcoHa-Maviepca, B TOM CMbICE, YTO 3HTPOMUSI BO3HUKAET U3 rpaHnYHOro
cnaraemoro B rpaBUTaUMOHHOM AENCTBUM, KOraa Bbigensietcs manas obnactb
BOMM3M NOBEPXHOCTM MepenyTbiBaHus. B Hawmx aprymeHTax Mbl UCMOMb3yem
ngeto ManbpaceHbl-JleBkoBMY4a M MHTEPNPETUPYEM paHWYHOE craraemoe a
rpaBUTaALMOHHOM AEWCTBUM KakK [delcTBuMe "KOCMMYEecKon CTpyHbl" (OpaHsbl).
OpHako BaxkHOe OTNMYMe Hallero nogxoda oT nepBoHavarnbHoW OpMynMpPOBKN
0600LLEeHHO rpaBMTaLMOHHOM aHTponun ManbgaceHbl 1 JleBkoBMYa B TOM, HTO
Mbl HE WCMOMNb3yeM MHOroobpasvsi C KOHWYECKMMW CUHIYNSPHOCTAMW  Kak
WHCTPYMEHT MpoBedeHnss pacyeToB. Bapuauuy rpaBUTaLMOHHBIX AENCTBUA MO
napameTpy pennuk noapasymMeBaloT W3MEHEHWE MOJIOKEHUS "KOCMUYECKOW
CTpyHbI". Tpebys, YTO NMOBEPXHOCTb NepenyTbiBaHUS SBMSAETCA IKCTPEMYMOM
dyHKLMOHanNa SHTpPoOnuKU, Mbl NpuUxoaum K dopmyrne, KoTopas coBrnafaeT ¢
M3BECTHBLIM pe3ynbTaTOM ANA SHTPOMUM YEPHOW [AbIpbl, KOrga MOBEPXHOCTb
nepenyTbiBaHUA OTOXAECTBNAETCA C rOPUM3OHTOM. B npuvMeHeHwn Hawero
noaxoda K TeopusM rpasuTauum B chopme JlaBnoka dopmyna ans 0606LeHHon
3HTPONUK coBnagaeT Cc pesynbTatamu, NoNy4YeHHbIMU APYTMU METOOAMMU.
Knrouesbie croga: SHTPONWS KBAHTOBOMO NepenyThiBaHWs, TEOPUW rpaBuTauum ¢
BbICLUMMW NPOV3BOAHBIMW, KBAHTOBAas rpaBUTaLms.

D. Fursaev
(Dubna, Moscow Region)

NOTES ON DERIVATION OF GENERALIZED
GRAVITATIONAL ENTROPY

Abstract. A novel derivation of generalized gravitational entropy associated to
co-dimension 2 'entangling’ hypersurfaces is given. The approach is similar to the
Jacobson- Myers 'Hamiltonian' method in a sense that the entropy appears from a
boundary term in the action when one isolates a small domain around the
entangling surface. In our arguments we also use the idea by Lewkowycz and
Maldacena and interpret the boundary term in the gravity action as a 'cosmic
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string' (brane) action. However, the important difference between our approach
and the original formulation of the generalized gravitational entropy by
Lewkowycz and Maldacena is that we never use manifolds with conical
singularities as a tool to carry out the computations. Variations of gravity actions
over the replica parameter imply changing position of the 'cosmic string’. By
requiring that the entangling surface is an extremum of the entropy functional we
come to the entropy formula which coincides with known results for black hole
entropy formula when the entangling surface is a black hole horizon.When our
approach is applied to Lovelock theories of gravity the generalized entropy
formula coincides with results derived by other methods.

Key words: entropy of quantum entanglement, higher derivative gravity theories,
quantum gravity

1. Introduction

There is a mounting number of arguments that the Bekenstein-Hawking
entropy can be applied not only in case of black hole horizons but to arbitrary
co-dimension 2 surfaces in flat and curved spacetimes. First arguments that this
can be done in a consistent way have been presented in the work of the present
author [7; 8]. If B is a minimal hypersurface in a constant time slice £ of a
stationary spacetime M which is a solution to the Einstein theory one can
associate to this surface an entropy [8]

s(z)=A8). (1.1)
4G

Equation (1.1) has been inspired by the holographic formula [14] for
computing entanglement entropy in conformal theories with gravity duals. S(B)
can be interpreted as an entanglement entropy in quantum gravity [8]. A similar
concept of spacetime entanglement was discussed in a number of publications,
see e.g. [1; 12].

Recently formula (1.1) has been also proposed by Lewkowycz and
Maldacena [11] as a 'generalized gravitational entropy'. The authors of [11]
considered a general setup when M is an arbitrary (not necessarily stationary)
solution of the Einstein gravity. It was assumed that boundary oM of M has
non-contractable circles S’ which are contractable inside M on B. When B is
minimal in M equation (1.1) yields an entropy associated to a density matrix
specified by the given boundary conditions. It was argued that the above
construction also has an entanglement interpretation.

The Maldacena-Lewkowycz proposal and its extensions to higher
derivative gravities attracted a considerable interest [2—6]. The main difficulty
here was related to a careful treatment of conical singularities in gravity actions
[9]. The singularities appeared in [11] at some steps of computations.

The aim of the present work is to derive the generalized gravitational
entropy without any use of conical singularities. Our approach is similar to the
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Jaconson-Myers 'Hamiltonian' method [10] in a sense that the entropy appears
from a boundary term in the action when one isolates a small domain around the
entangling surface B. We prove the extremality of the entropy functional on the
entangling surface and test our approach in Lovelock theories of gravity.

After necessary definitions in Sec. 2 the suggested method is introduced in
Sec. 3. Applications to higher derivative gravities are considered in Sec. 4
followed by a brief discussion in Sec. 5.

2. Definitions

Entanglement entropy in a quantum gravity, as suggested in [8], is specified
by the boundary conditions, which imply a holographic nature of the theory. One
starts with a class of manifolds M with the boundary condition 0M=T, where T is
a d—1 dimensional manifold. The entanglement entropy of [7; 8] and the
generalized gravitational entropy of [11] can be defined in terms of an
'entanglement’ partition function Z[7,] where n=1,2,..., and 7, are boundary
manifolds constructed from n copies of 7. Construction of 7, is similar to a
construction of 'replicated' manifolds in a QFT to represent quantities like Tr o,
where pis areduced density matrix obtained by tracing over unobservable states.

The entanglement partition function Z[7,] is defined by quantum gravity
theory, where bulk geometries M, have the boundary oM, = T7,. One may
represent Z[7,] in terms of some integral over 'histories' with above boundary
conditions and integration measure defined by some low-energy action /[M,]. In
a semiclassical approximation InZ[T ]E_I[Mn]’ where Mﬂ realizes a minimum

of the action for given boundary conditions, and the entropy can be defined as 8]
S =lim(nd, ~1)I[M,]- 2.1

One first finds the action for integer #, assumes that n can be replaced with
a continuous parameter, and then goes to n=1. This is a common trick used in
statistical physics known as a replica method.

The Maldacena-Lewkowycz approach is to look for j7 as regular

solutions to the corresponding low-energy gravity equations with the condition
oM =1 - We assume that ;;_ 3 is one of solutions for standard boundary

conditions gM =T .

In [11] the boundary manifolds 7" are required to have non-contractable
circles S'. One can introduce a coordinate 7along the circles with the period 27
The boundary manifold 7, for the partition function in the replica method is
glued smoothly from » copies of T such that 7has the period 27m. It is required
that 7'and 7, are boundaries of manifolds where S' can be contracted in the bulk.
A simple example is the case of a black hole instanton, where M is a solid
hypertorus for 0M= S'x §*.
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In the rest of the paper we use the following notations: Ry, is the Riemann
tensor of a d dimensional manifold M, M has the Euclidean signature. The Greek

indexes run from 1 to d. 0M is a boundary of M, K is the extrinsic curvature

tensor of OM. The Latin indexes a, b, ¢, d run from 1 to d—1. A tensor R,;.; on OM
is a projection of the Riemann tensor of M on a space tangent to OM. B is an
'entangling' co-dimension 2 hypersurface in M. We use a unit complex vector
constructed from two normal vectors to B and define the corresponding complex
extrinsic curvature kj The Riemann tensor defined by the metric of B is denoted

as lél_jk[. The Latin indexes i, j, k, 1 run from 1 to d-2. The operation

[£1,....1p]denotes  totally antisymmetric combination of p p indexes
(accompanied by the factor 1/p!).

3. A novel derivation of the generalized entropy
To present the method we start with the Einstein gravity. Let ]\7 be a

solution to gravity equations for correspondlng boundary conditions 7,,. Let B,
be an extremal surface in M where S' are contracted. Maldacena and

Lewkowycz [11] interpret B, as a world-sheet of a cosmic string (brane) and
derive conditions on B, from a regularity condition on the geometry around a
cosmic string. We consider sets of solutions A/ and corresponding surfaces B,

but do not write the index » explicitly for a while.

The 'cosmic string' action on B, can be inferred immediately from the
gravity action on M . The idea is the following. Consider a small neighbourhood
N, around B, where the metric behaves as [9]

ds* = ridt* +dr? + (7/,:,. (v)+ Zr(cos k" (v)+ sin Tk,‘-(,-z)(v)))zdv"dvf (3.2)
Here 0<7<27m, 7,(v) is a metric on B, and k;p) are two extrinsic

curvatures of B. In coordinates (3.2) the boundary of the neighbourhood is
chosen to be located at r=¢.

The gravity action on M is decomposed on the action on N, and the action
on M /N,. It is assumed that a necessary boundary term with the extrinsic
curvature on the boundary of &, is included in the actions to have a well-posed
variational problem. In the limit e—0 the action on N, can be interpreted as a
'cosmic string' action /g,

I, [B] =lim I[N, ] =~ A(B) /(4G), (3.3)
J‘ \/7(1 xR—i_[ \/7 dl , (34)

I[N, 1=~

16G
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To get (3.3) from (3.4) one should take into account that the extrinsic
curvature tensor K* of N, has a singular component K* =1/ ¢. This singularity

is compensated by the factor ¢ in the integration measure. The bulk part of
I[N, ]vanishes in this limit since N, is a regular manifold. Note that a 'cosmic
string' has the negative tension —1/(4G). Thus, the use of this terminology is only
for an analogy, not for drawing any physical consequences.
In the limit e—0 one can write
IIM]=1[M]+1,,[B], 3.5)
where 1[[\7 ‘] is an action on a manifold M =M/B , where B is

removed. Variation of (3.5) over the metric yields the Einstein equations outside
B. These are the vacuum equations if the matter is absent.

Variation of the 'string action' is easy to understand at a small but finite ¢ (at
a finite brane thickness). There are non-trivial variations on the boundary N, due
to the boundary terms in the gravity action on )/ / N, and in the 'string' domain

N,. This yields equations
(k2 —pvk), =—(k# — k) =876t . (3.6)
Here (K )" and (K,

v

7]

are the extrinsic curvatures of N, in A/ / N, and N,

respectively. The left hand side comes out from the 'gravity part' and the right
hand side from the 'string'. The r.h.s. of (3.6) is interpreted as a stress-energy
tensor of the 'string'. Equations (3.6) are identities since the division on the
gravity and 'string' parts is artificial.

From now on the index # is restored. Before applying formula (2.1) we
discuss variation of I[ Mﬂ] over n. We use the same arguments as in [11] and

consider /[M ] as some integrals at continuous n.
Let us start with decomposition (3.5). For J [M:] extrapolation to

continuous # does not pose a problem. There appear no conical singularities on
M ¢ since a small domain near B, is excluded. Variation over # can be written as

M= ITM L1+ 02 ™  IIM S 1+ I[M (] - (3.7)
The operation a‘n"‘ means a change of the upper limit in the integrals in 7,

when the integrand itself is fixed. Variations a‘;““‘,a‘;"““ take into account,

respectively, change of metrics in the bulk and on the boundaries of M,
Variation of the string action can be written as
anlstr[Bn]za:qne’rl [Bn]+ag”s1str[Bn]7 (38)
where g™ corresponds to the variation of the metric of B,, while g takes

str

into account change in the position of B, under fixed metric. If B, is a minimal
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surface the change of the position does not change the string action in the leading
order.
We need variations at n=1. Since the operation 9™ (3.7) does not change

the metric one has
limd™ I[M 1= I[M°]> (3.9)

n—l

where A/ = M. Equation (3.9) is easy to understand when the metric

does not depend on 7 In general case one should consider changing the
integration limits as changing the number of integrals 7[Af°]. One also has

lim 0 [[M¢1=0. (3.10)
n—1
The action has an extremum on )/ ‘.

Since the metric on the external boundary is fixed one should care about
variations on the internal boundary of j7¢. The latter are compensated by the

variations of the string action,
oM I [B, 1+ 02" I[M{]=0. (3.11)
Eq. (3.11) is ensured by gravity equations (3.6) in the presence of the string.
By taking into account equations (3.8), (3.9), (3.10), (3.11) one finds

lim 0,I[M,]=1[M]+ lim 07" 1, [B,] - (3.12)
S:_Isrr[Bn]+}liinlagﬂsls!r[Bn]' (313)
The Bekenstein-Hawking formula (1.1) follows from (3.13) if one uses
(3.3) and assumes that B, is a minimal surface.

4. Entropy formula in the Lovelock gravity
From Egs. (3.3), (3.13) the generalized entropy can be written as

§=—Iy[B]==limI[N,]- (4.14)

It is important that this equality does not require that the theory is of the
Einstein form. It can be applied to other theories, e.g. higher derivative gravities
provided that the action functional /[N,] includes boundary terms which insure
well-posed variational procedure. (Normal derivatives of the metric variations
should not appear on the boundary.) Another requirement is that B is an
extremum of /,[B]. Remember that this condition eliminates the last term in the
r.h.s. of (3.13).

An example of a higher derivative gravity, where the required boundary
terms are known, is the Lovelock theory

1L,M1=-Y ¢, (] Jed'sL,+[ ha"'yD,) (4.15)

Here ¢,, are some coefficients, ¢;>0, and
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T (4.16)
(2m ) &
_ [a, a, s p+1 p bicy bycsy by piCmpa]
Dm - om= 1 Z K K K‘17;+1 Rblcl Rb757 . R by, ,i 1Cm— ,i 1] (4 17)
p=0

4 - (m=1)2°7 p!
m"]i(ln—p—l)!(2p+1)!. (418)

It is implied that curvatures in the r.h.s. of (4.17) are taken on B. We use the
form of the boundary term (4.17) given in [13].

Consider the Lovelock action in a small domain N, where the metric
behaves as in (3.2). As earlier, we place the boundary ON, at r=¢. The 'string
action' in this theory is determined by the boundary terms on ON,.

We need to study boundary terms in (4.15) in the limit e—0. Since the only
singular component of K is KI=1/¢ one can easily see that B ~1/¢ at

&£—0. The singular terms can be easily extracted from (4.17):

b, Cn-p-1] ~ 2P+1 KTKM K”/rRllkl

[a Dpa phig
Kig K R R 7|]_2m_1 T Ty, Tk

[ag """y, " he b,

=iy (4.19)
The factor (2p)!/p! in the r.h.s. of (4.19) appears since a pair of upper and
lower 7indexes take 2p+1 positions, 2m—1 in the denominator results from the
normalization factor in the operator [...]. The indexes i, j, £ enumerate
components of the curvature tensors in the directions tangent to B.

It is convenient to introduce complex extrinsic curvatures of B
k, 2%(1‘,-(,-” _ ik,-l,-Z))7 1;[ _ k; . (4.20)
Integration over the 7 coordinate can be easily done,
T dTK KR LR =

o] (4.21)
| )
ORI R R

g 2m—-1 p!
The factor (2p)!/p! in the r.h.s. of (4.21) counts the number of ways when p
k-curvatures (or k -curvatures) appear from 2p K-curvatures.

When (4.21) is used in the boundary term (see (4.17)) one comes to the
action

1= , 4.22
;5%114 4717’12 mcm m B] ( )

[B :J’ L (4.23)
L 2(m=1)e 23”(m ! ;

i, =20 KKk kR R
27 R plm— p )T e T TR T ey 0 g

One can now see that the last equation (4.24) is of Lovelock form on B,
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7 Qm=1)! Rl R in-tin-1]
mel m= -1 [11//1 Riz/z e Rimflj/mfl] . (425)

Egs. (4.24) follow from (4.25) if one uses in (4.25) the Gauss-Codazzi
equations on B

Ry = RY: + 20k + kKD — KK =Kk @26
Factor (m—1)!/(p!(m—p-1)!) yields a number of ways to pick up p kk -pairs.
Multiplier 2% takes into account factor 2 in the r.h.s. of (4.26) and the fact that
each Riemann curvature in (4.26) produces 4 jf -pairs.

We come to the following formula of the generalized entropy associated to
the surface B:

S=4xy me,l,[B] .27)

In particular case of the Gauss-Bonnet gravity this entropy formula has
been obtained by different methods: in [9] by using 'off-shell' conical singularity
method and in [2; 5] from the requirement of regularity of the geometry around
the 'cosmic string'. For general Lovelock gravity our result coincides with
formula derived in [6].

5. Discussion

We presented a sketch of arguments which may support the
Maldacena-Lewkowycz proposal [11] when the low-energy gravity action has
higher derivatives. We have not yet emphasized but implied that this
construction should be applicable to holographic entanglement entropy. In this
case B is a holographic entangling surface and the background manifold M is a
solution to an AdS gravity.

Our arguments (and, perhaps, other derivations of the generalized
gravitational entropy) cannot be considered as a sort of mathematical proof. One
should prove that regular gravity solutions for given boundary conditions for
each value of the replica index n do exist. If this is the case then the
Maldacena-Lewkowycz entropy can be derived 'on-shell' without any use of
manifolds with conical singularities.

In contrast to [11] the approach of [8] can be called 'off-shell'. By the
construction the bulk manifolds M, in [8] are replicas of M; with conical
singularities at B. Understanding how the two ways to the gravitational entropy,
[8] and [11], compliment each other would be a helpful step to resolve the
remaining issues.
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